
Members: Alek Comstock, Jeffery Kasper, Sandro 
Panchame, Rudolph Nahra

1

Advisor: Dr. Rover
Client: JR Spidell

Email: sddec23-02@iastate.edu

Machine Learning & 
Heterogeneous 

Computing for Real-time 
Eye Tracking

Ref: https://www.mouser.com/images/marketingid/2021/img/134666503.png



Introduction

2



The Project

3

Problem

Eye tracking can require very high 
frame rates (200+ FPS) to correctly 
capture some eye movement patterns, 
such as the saccade.

 It is difficult to achieve these frame 
rates in an embedded system.

Solution

Accurate and fast eye tracking can be 
achieved using:

● Heterogeneous hardware 
specialized for machine learning 
(ML)

● Implemented on a field 
programmable gate array system on 
chip (FPGA SOC)

● Using a custom ML model.



Requirements

4



Requirements: Functional

5

Functional

● Take in many images of eyes
● Output position of pupil and 

open/close state

 



Requirements: Nonfunctional

6

Nonfunctional:

● Process each frame of a video feed with 
enough throughput to keep up with 
incoming images

● Root Mean Squared Error (RMSE) of pupil 
position estimation must be within 3 pixels 
of the ground truth

● Usage of the Real-time Processing Units 
(RPU) to enable response to hard time 
constraints

Constraint:

● Restricted to the Kria KV260 platform



Possible Use Cases

● Knowing the human’s eye movement 
tells you a lot about the state of that 
human. 

● This is helpful in cases where we want 
to, for example:
○ Monitor vehicle drivers (planes, 

automobiles, heavy machinery)
○ Diagnose diseases

7

Ref: https://cipia.com/driver-sense/



System Design: ML Model

8



System Data Processing 

● Image preprocessing conducted before neural network
● Neural network outputs an estimate of (X,Y) coordinates of pupil center
● Results are reported

9



Model Training: Dataset

● Dataset sourced from TEyeD
○ Very large collection of real world near eye images
○ Annotations consisted of information such as landmark information, eyeball center, and 

movement classification
● Roughly 28GB of data was used in training

○ The portion consisted of videos under two and half minutes in length
○ The rest of the dataset was left alone for testing purposes

10



Model Training: Architecture

● Convolutional Neural Network
● Provided Model Architecture

11



Model Training: Results 

● Multiple models were trained until we achieved the following result
○ Roughly 260,000 samples used in training
○ Loss function = RMSE 
○ Model resulted in a RMSE of 2.54 pixels

12



Clip

● Blue = Ground Truth
● Red = Predicted

13



Hardware

14

● Kria KV260
○ Development board designed by Xilinx.
○ Contains a Kria K26 SOM FPGA.

■ Configured with a Deep-Learning 
Processing Unit (DPU).

○ 4 ARM Cortex A53 cores running a 
Petalinux environment.

○ 2 ARM Cortex R5 running in a bare 
metal environment.

○ 4GB of Memory.

Ref: https://www.mouser.com/images/marketingid/2021/img/134666503.png



Heterogeneous Computing Elements

1. RPU
○ Real time processor
○ Bare metal

2. APU
○ 4 ARM A53 processors
○ Linux-based OS

3. DPU
○ Deep Learning Processor
○ FPGA ML Accelerator

15



DPU Details

● DPU can perform ML calculations with high parallelization
● Instantiated in FPGA fabric as a systolic array
● Takes instructions like any other processor
● Instructions are compiled from the ML model into a *.xmodel file
● APU feeds instructions to the DPU

16



Heterogeneous Communication

17

● OpenAMP
○ Framework facilitating communication 

between heterogeneous computing 
elements.

○ Allows sending small messages 
between APU and RPU via a shared 
memory region

● Libmetal
○ OpenAMP only allows small messages 
○ Need to transfer entire image
○ Libmetal enables management of large 

shared memory regions



Software Tools by Processing Unit

● RPU code developed with Xilinx 
Vitis

● APU code developed directly on 
board

● Hardware design created and 
synthesized using Xilinx Vivado 

18



Challenges Overcome

19



Accomplishments

20

● Compile custom operating system (petalinux)
○ Careful creation of memory regions
○ Must compile with correct kernel settings and packages

● Created and synthesized hardware design for FPGA
● Trained the provided machine learning algorithm
● Compiled XIR model of our trained machine learning algorithm
● Implemented an algorithm for passing messages between heterogeneous 

computing modules
● Accelerated model inference running on board



Testing

● Testing was performed on the Kria board
● Video frames outside of training dataset were put on Kria file system
● APU used DPU installed on FPGA to perform model inference
● Results were compared to ground truth from dataset

We achieved RMSE of 2.54 pixels and 220 frames per second, meeting our 
accuracy and throughput objectives 

21



Marabou

● Originally Neural Network Verification was a goal of our project
● NN verification proves that the NN meets specification and does nothing else
● Marabou uses formal methods for verification of NN
● We learned that formal methods is computationally expensive
● Currently, only possible to verify very small networks
● Our network was too big

22



Gantt Chart/Project Schedule

23



Next Steps

● Receive image feed from camera
● Integrate with larger project
● Reduce error of neural network
● Verify neural network
● Optimize processing algorithms to achieve higher frames per second

24



Questions?

25



END

26



END

27



END

28



Appendix

29



Resources

30

● TEyeD
○ https://arxiv.org/pdf/2102.02115v3.pdf

● NN Verification
○ https://aisafety.stanford.edu/marabou/fomlas19.html#/sec-architecture-overview
○ https://www.youtube.com/watch?v=KiKS_zaPb64 

● Remodnav
○ Dar, A.H., Wagner, A.S. & Hanke, M. REMoDNaV: robust eye-movement classification for 

dynamic stimulation. Behav Res 53, 399–414 (2021). 
https://doi.org/10.3758/s13428-020-01428-x 

https://arxiv.org/pdf/2102.02115v3.pdf
https://aisafety.stanford.edu/marabou/fomlas19.html#/sec-architecture-overview
https://www.youtube.com/watch?v=KiKS_zaPb64
https://doi.org/10.3758/s13428-020-01428-x

